PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)
II B.TECH ISEMESTER END REGULAR EXAMINATIONS, JAN - 2023
SWITCHING THEORY AND LOGIC DESIGN
(ECE Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	C	KL
UNIT-I					
1.	a)	Encode the decimal numbers using 6, 3, 1,-1 weighted code. Is it a self-complementing code?	[7M]	1	2
	b)	Generate Hamming code for a 4-bit Excess-3 message to detect and correct single-bit errors.	[7M]	1	3
OR					
2.	a)	Reduce the following function using the k-map technique. $F(A, B, C, D)=\Pi M(1,2,3,5,6,7,8,9,12,13)$	[7M]	1	2
	b)	Simplify the Boolean function F using the don't care conditions d, in (i) sum of products and (ii) product of sums. $F=A^{\prime} B^{\prime} D^{\prime}+A^{\prime} C D+A^{\prime} B C$	[7M]	1	3
UNIT-II					
3.	a)	Implement the following function using only NAND gates $G=(a+b) .(c . d+e)$	[7M]	2	3
	b)	Perform the realization of full subtractor and full adder using decoders and logic gates.	[7M]	2	2
OR					
4.	a)	Explain the realization using Multilevel NAND-NOR gates	[7M]	2	2
	b)	Explain the operations of the Carry look-ahead adder.	[7M]	2	3
UNIT-III					
5.	a)	Design a 4-bit binary comparator with basic gates.	[7M]	3	3
	b)	Write a brief note on the Architecture of PLDs	[7M]	3	2
OR					
6.	a)	Realize the function $f(A, B, C, D)=\Sigma(1,2,5,6,7,8,10,14,15)$ using i) $8: 7 \mathrm{MUX}$ ii) $4: 1 \mathrm{MUX}$	[7M]	3	3
	b)	Implement $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,3,5,6,8,9,11,12,13$) using PAL and explain its procedure.	[7M]	3	3
UNIT-IV					
7.	a)	What is race around the condition and how to avoid it along with the circuit diagram?	[7M]	4	2
	b)	Design a mod-12 Ripple counter using T flip flops and explain its operation.	[7M]	4	3
		OR			

8.	a)	Realize D-latch using R-S latch. How it is different from Dflip flop. Draw the circuit using NAND gates and explain.			[7M]	4		3
	b)	Convert JK flip-flop	to T f	p-flop.	[7M]	4		2
UNIT-V								
9.	a)	Find the equivalence partition and a corresponding reduced machine in a standard form for a given machine.			[7M]	5	3	
	b)	Explain the procedure of Meelay to Moore conversion.			[7M]	5		2
OR								
10.	a)	The output Z of a fundamental mode, two input sequential circuit is to change from 0 to 1 only when x 2 changes from 0 to 1 while $\mathrm{x} 1=1$. The output changes from 1 to 0 only when x 1 changes from 1 to 0 while $\mathrm{x} 2=1$. Find a minimum row reduced flow table.			[7M]	5		3
	b)	Draw the diagram of Mealy-type FSM for the serial adder.			[7M]	5		2

