HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH ISEMESTER END REGULAR EXAMINATIONS, JAN - 2023 SWITCHING THEORY AND LOGIC DESIGN (ECE Branch)

Time: 3 hours

Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	С	KL				
		UNIT-I							
1.	a)	Encode the decimal numbers using 6, 3, 1,-1 weighted code. Is it a self-complementing code?	[7M]	1	2				
	b)	Generate Hamming code for a 4-bit Excess-3 message to detect and correct single-bit errors.	[7M]	1	3				
OR									
2.	a)	Reduce the following function using the k-map technique. $F(A,B,C,D)=\prod M(1,2,3,5,6,7,8,9,12,13)$	[7M]	1	2				
	b)	Simplify the Boolean function F using the don't care conditions d, in (i) sum of products and (ii) product of sums. F= A'B'D' + A'CD+A'BC	[7M]	1	3				
UNIT-II									
3.	a)	Implement the following function using only NAND gates $G=(a + b).(c. d + e)$	[7M]	2	3				
	b)	Perform the realization of full subtractor and full adder using decoders and logic gates.	[7M]	2	2				
OR									
4.	a)	Explain the realization using Multilevel NAND-NOR gates	[7M]	2	2				
	b)	Explain the operations of the Carry look-ahead adder.	[7M]	2	3				
UNIT-III									
5.	a)	Design a 4-bit binary comparator with basic gates.	[7M]	3	3				
	b)	Write a brief note on the Architecture of PLDs	[7M]	3	2				
OR									
6.	a)	Realize the function $f(A,B,C,D) = \Sigma(1,2,5,6,7,8,10,14,15)$ using i) 8:1 MUX ii) 4:1 MUX	[7M]	3	3				
	b)	Implement f (A, B, C, D) = $\Sigma(0,1,3,5,6,8,9,11,12,13)$ using PAL and explain its procedure.	[7M]	3	3				
UNIT-IV									
7.	a)	What is race around the condition and how to avoid it along with the circuit diagram?	[7M]	4	2				
	b)	Design a mod-12 Ripple counter using T flip flops and explain its operation.	[7M]	4	3				
OR									

Code	No:	P21ECT02								
8.	a)	Realize D-latch using R-S latch. How it is different from D flip flop. Draw the circuit using NAND gates and explain.	- [7M]	4	3					
	b)	Convert JK flip-flop to T flip-flop.	[7M]	4	2					
UNIT-V										
9.	a)	$ \begin{array}{c c} \mbox{Find the equivalence partition and a corresponding reduced} \\ \mbox{machine in a} \\ \mbox{standard} \\ \hline PS & NS, Z \\ \hline X=0 & X=1 \\ \hline A & C,1 & E,1 \\ \hline A & C,1 & E,1 \\ \hline B & A,0 & D,1 \\ \hline C & E,0 & D,1 \\ \hline D & F,1 & A,1 \\ \hline E & B,1 & F,0 \\ \hline F & B,1 & C,1 \\ \hline \end{array} \right \ \ \ \ \ \ \ \ \ \ \ \ $	[7M]	5	3					
	b)	Explain the procedure of Meelay to Moore conversion.	[7M]	5	2					
OR										
10.	a)	The output Z of a fundamental mode, two input sequential circuit is to change from 0 to 1 only when x2 changes from 0 to 1 while x1=1. The output changes from 1 to 0 only when x1 changes from 1 to 0 while x2=1 Find a minimum row reduced flow table.	9 [7M] 9	5	3					
	b)	Draw the diagram of Mealy-type FSM for the serial adder.	[7M]	5	2					
